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Data-driven approach for the 
prediction and interpretation of 
core-electron loss spectroscopy
Shin Kiyohara1, Tomohiro Miyata1, Koji Tsuda2,3,4 & Teruyasu Mizoguchi1

Spectroscopy is indispensable for determining atomic configurations, chemical bondings, and 
vibrational behaviours, which are crucial information for materials development. Despite their 
importance, the interpretation of spectra using “human-driven” methods, such as the manual 
comparison of experimental spectra with reference/simulated spectra, is difficult due to the explosive 
increase in the number of experimental spectra to be observed. To overcome the limitations of the 
“human-driven” approach, we develop a new “data-driven” approach based on machine learning 
techniques by combining the layer clustering and decision tree methods. The proposed method 
is applied to the 46 oxygen-K edges of the ELNES/XANES spectra of oxide compounds. With this 
method, the spectra can be interpreted in accordance with the material information. Furthermore, 
we demonstrate that our method can predict spectral features from the material information. Our 
approach has the potential to provide information about a material that cannot be determined 
manually as well as predict a plausible spectrum from the geometric information alone.

Unveiling the atomistic configurations, chemical bondsing, and vibrational behaviours of molecules and atoms, 
which are commonly correlated to the functions of a material, is the most important task of materials research. 
Spectroscopic techniques, such as diffraction, reflection, emission, and absorption, have been used to identify 
such information, because the spectral features are correlated to the material information1–4. However, the spec-
trum does not directly provide the actual “values” of the material information. Thus, “interpretation” of the spec-
trum is necessary to determine the correlation between the spectral features and material information.

However, the interpretation of a spectrum is not always straightforward. For instance, X-ray diffraction and 
infrared absorption spectroscopies have been used for a long time in materials science as standard spectroscopic 
techniques for identifying crystal structures and the dynamical behaviours of molecules, respectively, and the 
observed spectra are typically interpreted by comparison to those in a database prepared from a long history of 
reference-compound observations. However, even in these well-known spectroscopic techniques, “unknown” fea-
tures not present in the database are encountered in the spectra of “unknown” or “new” materials. Such cases are 
common in all spectroscopic techniques, and therefore, spectral simulations with suitable models are required.

Among existing spectroscopic techniques, core-loss spectroscopy using electrons or X-rays, namely, electron 
energy-loss near-edge structure (ELNES) and X-ray absorption near-edge structure (XANES), offer atomic-scale 
spatial resolution5, nanosecond-level time resolution6, and high sensitivity7 and can be considered to be the “ulti-
mate analysis” in materials science8. As ELNES/XANES commonly originate from an electron transition from 
a core orbital to the conduction band (unoccupied orbitals), their spectral features reflect the atomic coordina-
tion, bond length, valence state, and local electronic structures; theoretical calculations have been used to inter-
pret these spectral features9–12.

In ELNES/XANES experiments, time-resolved or/and spatially resolved observations are often performed. 
For instance, spatially resolved ELNES, namely, spectral imaging, with several hundreds of pixels has been 
reported13–16. In XANES, pico- or nanosecond time-resolved observations are possible, and time-resolved 
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experiments for tracing chemical reactions have been performed17–19. Through such spatially/time-resolved 
ELNES/XANES observations, several thousands to tens of thousands of spectra can be observed in an experiment.

For a dataset containing numerous spectra, individual interpretation through theoretical calculations is unre-
alistic because each ELNES/XANES calculation requires exclusive knowledge of both the experiment and the 
theoretical calculation and involves many computations. Thus, the number of spectra that can be generated using 
these modern instruments cannot be handed by a “human-driven” interpretation approach.

Recently, approaches for obtaining new insights by handling big-data, called “data-driven” approaches, have 
attracted significant attention in materials science. By analysing big-data, these “data-driven” approaches have 
realized the discovery of desired structures with minimum computation20–22, new materials with higher perfor-
mances23–26, and information that could not be previously determined from experiments27,28 and simulations29,30. 
Hence, this data-driven method has the potential to interpret considerably more spectra than can be analysed by 
humans. Machine learning has also been applied to experimental spectroscopies31–33. However, previous studies 
mainly involved the prediction of a scalar value or discrete values in a simple spectrum, such as a chemical shift or 
peaks in an NMR spectrum31–33. Machine learning has not been applied to determine complex spectral features, 
such as those in ELNES/XANES.

To overcome the limitations of “human-driven” spectral interpretations, we developed a new “data-driven” 
approach to predict and interpret spectra. Our approach was applied to 46 O-K ELNES/XANES edges of oxide 
compounds and was successful at predicting and interpreting the spectra. Even non-experts can easily apply our 
approach to extract information from the ELNES/XANES spectra and utilize this information to obtain new 
physical insights without theoretical calculations.

Results and Discussion
Overview of the data-driven prediction and interpretation method.  The schematic of the proposed 
“data-driven” spectral analysis is presented in Fig. 1(a–c). Initially, a spectral database, in which each spectrum 
has a one-to-one correspondence with its atomic structure, is constructed (Fig. 1(a)). As the purpose of this 
study to establish a “data-driven” approach to predict and interpret spectra, we constructed the spectral data-
base using theoretical calculations. For this purpose, we calculated all spectra with the same parameters, for 

Figure 1.  Strategy for the data-driven prediction and interpretation of spectra. Schematics of (a) the spectral 
database and structures, which have one-to-one correspondence, (b) spectral clustering, and (c) structural 
classification with the spectral groups as the training data.
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example, k-points, cutoff energy, and cell size, under the one-particle density functional theory-generalized gra-
dient approximation (DFT-GGA) theoretical framework. After creating the database, the included spectra were 
divided into groups according to their “similarity” using hierarchical cluster analysis, which divides the spectral 
data into tree-shaped clusters called “dendrogram” (Fig. 1(b)).

In the final step, the materials are classified into groups with a decision tree based on information such as the 
bond length, coordination number, group in the periodic table, and valency. As schematically shown in Fig. 1(c), 
materials are classified using material information such as “trivalent”: true/false and “long bond length”: true/
false. The most important aspect of our method is the classification of the materials into the spectral groups, 
which are used as the training labels for classification of the materials. As the decision tree for materials is based 
on the spectral groups, this decision tree establishes a correlation between the material information and spectral 
features. In the decision tree for material information, the branch points provide the “characteristic” descriptors 
for classifying the spectra, as discussed later.

Two trees, related to the spectrum and material information, which are correlated, are constructed in our 
approach. After the construction of these two trees, the prediction and interpretation of the ELNES/XANES spec-
tra can be performed. The strategy for the prediction and interpretation of the spectra is schematically depicted 
in Fig. 2.

Figure 2(a) shows the prediction method. For instance, consider a situation in which the atomic configuration 
of an objective material is known but its ELNES/XANES spectral profiles are unknown. Such situations often 
occur because we generally speculate (predict) the spectral profile prior to making observations to validate the 
experiment and sample conditions.

For the prediction, we apply geometric and element information, such as the bond length, angles, and valence 
state, to the material information decision tree. Hence, the decision tree becomes a true/false diagram (flowchart), 
for example, the true/false diagrams for trivalence and the bond length, as shown in Fig. 2(a). Moving down 
the true/false diagram using material (geometric and elemental) information, we arrive at any one of the labels, 
clusters 1, 2, or 3, as shown in Fig. 2(a); as the decision tree for material information is correlated to that of the 
spectrum, the objective spectrum should be similar to that in the cluster. This “downstream” method corresponds 
to the “prediction” of the unknown spectrum of a known structure.

Next, the interpretation method is explained. The “interpretation” of the spectrum is first defined. ELNES/
XANES spectra reflect the atomic and electronic structures; thus, the “interpretation of the ELNES/XANES spec-
trum” corresponds to the determination of the relationship between the spectrum and the atomic and electronic 
structures.

Consider a situation in which a spectrum of an unknown area/material is observed. In this case, we need to 
interpret the spectrum, i.e., the relationship between the spectral profile and material information, such as the 

Figure 2.  Conceptual schemes of (a) “downstream” spectral prediction and (b) “upstream” spectral 
interpretation.
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bond length, coordination number, etc., needs to be determined. For such interpretation, we again use two trees 
but move up the decision tree.

The strategy for interpretation is schematically shown in Fig. 2(b). For the ELNES/XANES spectrum of an 
unknown area/material, the cluster in the spectrum tree that is the most similar to the observed spectrum is first 
determined. In this study, the similarity is estimated by the cosine distance between a pair of spectra, which is 
often used for measuring the spectral similarity34,35. By measuring the cosine distances between the objective 
spectrum and all the other spectra, the spectrum with the shortest cosine distance is considered to be most similar 
to the objective spectrum.

In the example in Fig. 2(b), assume that the observed spectrum was the most similar to a spectrum in Cluster 
3. Then, moving up the material information tree starting from Cluster 3, geometric and elemental information, 
such as the bond length, valency, etc., can be obtained from the branching points. Then, the spectrum is inter-
preted using the atomic and electronic-structure information. In the case of Fig. 2(b), we can establish that the 
observed spectrum is obtained from a material with a “short bond length” and is “trivalent”.

The branching points in a decision tree play a critical role in the interpretation. When the most similar spec-
tral cluster has been determined, the objective material can be expected to have a structure similar to the mate-
rials in the cluster. However, the “characteristic” information of the corresponding cluster cannot be obtained. 
The branching points in the decision tree provide the “characteristic” information of the materials in the corre-
sponding cluster. We applied this two-trees method to the prediction and interpretation of O-K ELNES/XANES 
edges. The details of the theoretical calculations and machine learning methods for clustering and classification 
are described in the Methods section.

In this study, we focus on the oxygen-K (O-K) edges of monometal oxides because these edges can be easily 
calculated using the one-particle method based on DFT under the GGA framework; the O-K edge provides all 
information for the conduction band.

In this study, we calculated 46 O-K edges of oxide materials, including 14 monometal oxides (listed in Table 1) 
and 32 SiO2 polymorphous (listed in Table 2). These 14 monometal oxides were selected because they do not have 

Metal oxide Crystal structure

Li2O antifluorite

BeO rock salt

Na2O antifluorite

MgO rock salt

Al2O3 corundum

SiO2 β-cristobalite

CaO rock salt

TiO2 rutile, anatase

Ga2O3 β-form

Y2O3 bixbite

ZrO2 fluorite

In2O3 corundum

SnO2 rutile

Table 1.  List of oxides and their crystal structures. TiO2 has two types of polymorphs.

Label Space group Name

Polymorph 1 F41/d32/m β-Cristobalite

Polymorph 2-1, 2 P63/m2/m2/c Tridymite

Polymorph 3-1, 2, 3, 4 P6/m2/c2/c Zeolite

Polymorph 4 P42/n32/m —

Polymorph 5-1, 2 R32 —

Polymorph 6-1, 2 F2/d2/d2/d —

Polymorph 7-1, 2, 3 C12/c1 —

Polymorph 8-1, 2, 3, 4, 5 C12/c1 Coesite

Polymorph 9 P3121 α-Quartz

Polymorph 10 P3221 —

Polymorph 11 I42d —

Polymorph 12 P41212 α-Cristobalite

Polymorph 13 P6222 β-Quartz

Table 2.  List of SiO2 polymorphs, their space groups and names. The second number in the label represents the 
non-equivalent oxygen sites in the unit cells of the respective polymorphs.
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“complex” electronic structures, such as partially occupied 3d-orbitals or magnetism. SiO2 was selected because 
it has several polymorphs.

The 14 O-K edge spectra of the monometal oxides were used to demonstrate our method. The actual interpre-
tation and prediction were performed using the 32 O-K edge spectra of SiO2 polymorphous.

Demonstration using the O-K edges of monometal oxides.  Prior to the actual interpretation and 
prediction, we demonstrate the construction of the two trees. Our approach was first applied to the O-K edges of 
14 monometal oxides. All calculated spectra are depicted in Fig. 3. The cluster analysis result for the spectra forms 
a dendrogram, as shown in Fig. 4. Starting with no links at the bottom of the dendrogram, similar spectra and/or 
clusters gradually merge, moving upward in the dendrogram. By cutting the dendrogram horizontally at a certain 
level, a set of clusters can be obtained. The selection of the cutting level is arbitrary; we selected the level indicated 
by the dashed line in the dendrogram, resulting in four clusters, Cluster 1 to Cluster 4. These four clusters have 
certain characteristic features, for example, Cluster 3 was composed of alkali metal oxides. We attempted to inter-
pret these features using the decision tree.

Eight parameters were selected as descriptors for the decision tree: 1) valence of the cation, 2) group and 3) 
period in the periodic table, coordination number of the 4) anion and 5) cation, and the number of 6) s, 7) p, and 
8) d electrons of the cation in the valence and semicore states. Figure 5 shows the constructed decision tree based 
on supervised learning; the decision tree divided the 14 oxides into two subsets based on whether they initially 
had d electrons and whether the “1st element or not” divided a subset and the “4th element or not” divided the 
other. The two constructed trees, shown in Figs 4 and 5, were used for interpretation.

For interpreting the spectra, we move up the decision tree, as mentioned above; this provides information on 
each cluster, for example, Cluster 3 was “with 1st elements” and “without d electrons”, which agree well with what 
we were previously considered from the dendrogram.

As the demonstration, we used the elemental information of the 14 oxides. However, the relationship between 
the spectral features and certain geometric information, such as the bond length and coordination number, are 
often important for the interpretation of ELNES/XANES spectra. To perform the actual interpretation and pre-
diction of the ELNES spectra, we apply this method to the 32 O-K edge spectra of SiO2 in the next section.

Interpretation and prediction of the O-K edges of SiO2 polymorphous.  We considered 13 poly-
morphs and 7 virtual polymorphs of SiO2, the space groups of which are listed in Table 2. As some polymorphs 

Figure 3.  Calculated spectra in this study. O-K edge of 14 oxides and 25 SiO2 polymorphs. The label colours 
correspond to those in the respective dendrograms and decision trees.
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have several oxygen sites, namely, 2-1, 2; 3-1~4; 5-1, 2; 6-1, 2; 7-1~3; 8-1~5, all were calculated separately. Thus, 
a total of 32 O-K edge spectra were obtained. The O-K edge of SiO2 was selected because although the compo-
sition is fixed, the atomic configuration is different and the spectral features can be interpreted using geometric 
information, such as Si-O bond length and Si-O-Si bond angle. Among them, excluding 7 virtual structures 
(described later) and randomly selected test data, polymorph 3-4, 24 spectra were used for hierarchical clustering 
and creating the decision tree.

The spectral features of the polymorph O-K edges are shown in Fig. 3, which clearly exhibit a variety of spec-
tral profiles. The cluster dendrogram for these 24 spectra is depicted in Fig. 6. At the threshold level in Fig. 6, 
which was not set arbitrarily but in data-driven manner as described below, seven clusters were generated. Cluster 
4, that is, polymorph 4, is separated from the other spectra at a higher level, indicating that its spectrum is highly 
dissimilar to those of the other polymorphs. In fact, the spectral features of polymorph 4 differ considerably from 
those of the others (Fig. 3). This result is supported by the fact that the crystal structure of polymorph 4 has higher 
symmetry than the other polymorphs. Polymorphs 7-2, 7-3, 8-4, 9, 10, 11, 12, and 13 formed the large blue group, 
as their spectral features are very similar to each other (Fig. 3).

We next focus on the blue group, namely, Cluster 5 (indicated by the blue arrow in Fig. 6). Spectra in this 
group commonly include a large peak at the spectrum threshold, followed by small peaks, as shown in Fig. 3 
(spectra with blue labels). Their features are visually very similar to those of the spectra in the yellow and green 
groups, namely, Cluster 6 and 7. However, our approach could tell that these three groups have some impercep-
tible differences. A detailed comparison revealed a small distinction, wherein the peaks of the blue group were 
slightly sharper than those of the other two groups. The sharper profile of Cluster 5 is ascribed to the more sym-
metric structures of the included materials. Most of the materials in Cluster 5 have a single oxygen site, whereas 
those in Cluster 6 and 7 have multiple oxygen sites in their unit cells. Moreover, the spectra in Cluster 7 also have 
a sharp first peak, as in the spectra in Cluster 5, but the position of the first peak is slightly different from that in 
Cluster 5. These small spectral differences may be difficult to be found by the human eye, but the present classifi-
cation method has the potential to discern such small differences.

These spectral features are very difficult to detect by one-to-one comparison, and their categorization by the 
human eye is difficult. However, the proposed data-driven method can determine their differences and categorize 
numerous spectra.

Figure 4.  Dendrogram based on the spectral similarities of the 14 metal oxide O-K edges. The axis on the right 
represents the cosine distances.

Figure 5.  Decision tree based on the training labels of Fig. 4.
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Next, we constructed the decision tree based on the structural information of these polymorphs. For this, 
we selected 32 geometric features as descriptors for creating the decision tree. These 32 descriptors are listed in 
Table 3. As previously mentioned, the construction of the decision tree was performed by supervised learning. 
Figure 7 depicts the constructed decision tree based on the threshold level indicated by the dashed line in Fig. 6. 
To determine the threshold line, we evaluated the accuracy rate for the training data at each level. As a result, deci-
sion trees with higher thresholds than the current line showed 100% correct prediction for the training data set.

To evaluate the constructed decision tree, the test data, namely, polymorph 3-4, was used for prediction and 
interpretation. First, we attempted to predict the spectrum of the test data (polymorph 3-4). In this case, the 
geometric information of polymorph 3-4 is known, as summarized in Table 4. As mentioned above, we move 
down the decision tree (Fig. 7) for prediction, using the geometric information of the polymorph 3-4 site; the 

Figure 6.  Dendrogram based on the spectral similarities of the 24 O-K edges of the SiO2 polymorphs. The axis 
on the right represents the cosine distances.

Thirty-two descriptors for SiO2 polymorphous

Number of bonds (1.0–1.5, 2.0–2.5, 2.5–3.0, 3.0–3.5, 3.5–4.0, 4.0–4.5, 
4.5–5.0, 5.0–5.5, 5.5–6.0 Å)

Shorter Si-O* bond length

Average Si-O* bond length

Si-O*-Si angle

Longer Si-O bond length

Shorter Si-O bond length

Average Si-O bond length

Volume of larger/smaller tetrahedron

Average O-O-O angle in larger/smaller tetrahedron

Average O-Si-O angle in larger/smaller tetrahedron

Table 3.  List of descriptors for the SiO2 polymorphs. O* indicates that the oxygen has a core hole.
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decision tree starts from “minimal Si-O bond length in small tetrahedron ≤1.6 Å”. The site for polymorph 3-4 has 
a minimal Si-O bond length in the small tetrahedron of 1.53 Å; thus, it is “true”. The next true/false decision is the 
“number of bonds between 4.4–5.0 Å ≤ 4”. For polymorph 3-4, this value is 15; thus, it is “false”. Furthermore, as 
per the polymorph 3-4 information, listed in Table 4, Cluster 2 (red group) is reached.

Based on the geometric information of the site, the proposed method suggests that the spectral features of 
polymorph 3-4 are similar to those of Cluster 2, which is composed of polymorph 2-2, 3-1 and 3-2. The actual 
spectrum for polymorph 3-4 is shown in Fig. 8(a) together with the spectrum of polymorph 3-1 (Fig. 8(b)). Our 
method predicted that the test data belonged to Cluster 2, and indeed the spectral features of polymorph 3-4 is 
very similar to that for polymorph 3-1, indicating that this method can predict the spectral features correctly.

Next, our method is used for interpreting the spectrum. We consider a different situation in which we know 
the spectral features of polymorph 3-4 but not the material information. First, we measure the cosine distance 
between the objective spectrum (in this case, the spectrum of polymorph 3-4) and all other spectra in the data-
base. In this case, the cosine distance to polymorph 3-1 is the least, indicating that this spectrum is most similar 
to that of polymorph 3-4. Through this process, the class of the objective spectrum can be determined. In this test 
case, the objective spectrum is categorized as Cluster 2 because polymorph 3-1 belongs to Cluster 2.

The spectrum is interpreted using the decision tree in Fig. 7. Since the objective spectrum is most similar to 
that of polymorph 3-1, the material information of the objective material is expected to be similar to that of pol-
ymorph 3-1 and the other polymorphs in Cluster 2. However, as mentioned above, the “characteristic” features 
of the materials in Cluster 2 cannot be determined. To obtain the “characteristic” feature, we need to travel up the 
decision tree in Fig. 7.

We can obtain the initial information, “maximum Si-O bond length in the small tetrahedron ≤1.6 Å”, and the 
next branch points, “max. Si-O* bond length ≥ 1.54 Å” and “number of bonds between 4.5 to 5.0 Å ≥ 4”, from the 
decision tree (Fig. 7). This information agrees with the geometric information of polymorph 3-4 (as summarized 
in Table 4). Thus, we can obtain the “characteristic” features of the materials in Cluster 2 from the branching 
points of the decision tree, and the spectrum can be interpreted using these “characteristic” features.

Finally, to determine the further applicability and limitations of the present method, we applied this method to 
other SiO2 systems. Here, seven virtual structures with the same crystal structure as polymorph 1 (β-cristobalite) 
but different volumes were constructed, as listed in Fig. 9. Polymorph 1 was selected because of its highly symmet-
ric structure, which allows us to easily investigate the local coordination. The Si-O bond lengths in these models 
(1.475~1.650 Å) are different from those in the original structure (1.550 Å). Their calculated spectra are shown 
in Fig. 10. The original spectrum is composed of a sharp peak B with small peaks A and a plateau peak C in the 
lower and higher energy regions (Fig. 10(d)), where the intensity of peak A gradually decreases/increases with 
decreasing/increasing Si-O bond length.

The spectra are categorized by their spectral features (middle column in Fig. 9) into Cluster 3, 1, 2, or 6. Based 
on the Si-O bond length and coordination environment, the cluster category can be predicted using the decision 
tree in Fig. 7, as demonstrated above in the “prediction” section. The results of the predicted cluster are summa-
rized in the right column in Fig. 9. The present method correctly predicted five of the seven structures (shaded by 
blue in Fig. 9), whereas the prediction failed for the remaining two structures (shaded by grey in Fig. 9). From the 

Figure 7.  Decision tree based on the training labels of Fig. 6. Each grey rectangle at the branching point 
represents a division rule. The solid and dashed lines indicate “true” and “false,” respectively.

Descriptor Polymorph 3-4

Minimal Si-O bond length in small tetra. 1.53 Å

Number of bonds (4.5–5.0 Å) 15

Maximum Si-O* bond length 1.60 Å

Maximum Si-O bond length in small tetra. 1.59 Å

Table 4.  List of the geometric characteristics of polymorph 3-4.
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Figure 8.  Calculated O-K edge spectra of (a) polymorph 3-4 and (b) polymorph 3-1.

Figure 9.  List of virtual polymorphs, correct labels/most similar polymorph, and predicted cluster by the 
decision tree in Fig. 7. The non-shaded row indicates the original polymorph 1 (β-cristobalite). Blue- and grey-
shaded rows indicate successful and failed predictions, respectively.
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succeeded/failed structures, we found that the present method can correctly predict when the Si-O bond length 
is largely different from the original, whereas the method failed when the virtual structures are very similar to the 
original structure.

The success or failure of the prediction can be ascribed to the training data used to construct the decision tree. 
The decision tree in Fig. 7 was constructed from polymorphs, which commonly have sufficiently different struc-
tures, and the tree did not “learn” tiny structural changes, such as a 0.025 Å bond length difference. Thus, struc-
tures with small structural changes cannot be predicted correctly using the present decision tree. However, the 
decision tree works well when the magnitude of the structural change is compatible to that in the polymorph tree.

This result indicates the applicability as well as the limitations of the present method, namely, the prediction/
interpretation depends on the training data used to make the two trees. The construction of two trees trained by 
many polymorphs is enough to predict/interpret relatively large spectral/structural changes. However, training 
data from virtual structures, as discussed above, should be necessary to predict/interpret very small spectral/
structural changes. This indicates that the combined database of both experimental and calculated spectra is 
important to achieve versatile prediction and interpretation.

Conclusion
In this study, we proposed a “data-driven” approach for predicting and interpreting ELNES/XANES spectra. 
Our method is based on the hierarchical clustering and decision tree. The calculated oxygen-K edges of 14 metal 
oxides and 32 SiO2 polymorphs, including 7 virtual structures, were used to demonstrate the proposed method.

With this method, the ELNES/XANES spectra can be interpreted in accordance with material information, 
such as chemical, elemental, and geometric information. Furthermore, our method was effectively used for pre-
dicting the spectral features from the material information.

To establish the proposed methodology, we constructed a spectral database using theoretical calculations. We 
emphasize that the proposed machine learning method is not spectroscopy-dependent and thus should work well 
for interpreting and predicting any spectral data, even diffraction, emission, and experimental data. A substantial 
database of over 300,000 calculated spectra was recently constructed36, and therefore, combining this database or 
others like it with our method allows for versatile and accurate predictions and interpretations. We believe that 
our method can pave the way for “data-driven” spectral interpretation and prediction.

Methods
Construction of the spectral database.  The CASTEP37,38 code was used for ELNES/XANES calculations, 
which is based on the first-principles plane-wave basis pseudopotential method. GGA-PBE39 was selected as the 
approximation of the exchange-correlation functional, and the cutoff energy was set to 500 eV. To introduce core-
hole effects, an excited pseudopotential was generated and applied to the excited oxygen atom in the supercell. 
To minimize interactions among excited atoms under periodic boundary conditions, sufficiently large supercells, 
larger than 10 Å, were used in all cases. The theoretical transition energy was also simulated, similar to a previous 
study38. The oxygen atom with a core hole is denoted “O*”. The O-K edges calculated in this study are shown in 
Fig. 3.

Spectral data clustering.  Hierarchical clustering40 was applied to categorize the spectral data. Initially, each 
spectrum was assigned to its own cluster. Then, the two most similar clusters were combined into one cluster. 
The clustering process was repeated until the number of clusters was unity. The spectral similarity was estimated 
using the cosine distance, and the clustering linkage schemes “completed” the method. In this study, as we directly 
compare the spectral feature itself, the onsets of all spectra were aligned. To estimate the position of the onset, the 
double differential of the spectrum was used.

Figure 10.  Calculated O-K edge spectra of the original polymorph 1 (d) and seven virtual structures (a–c) and 
(e–h) with the same crystal structure but different Si-O bond lengths.
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Decision tree for material information.  A decision tree visualizes the classification or regression results 
by a tree structure. By repeatedly dividing the data into two or more subsets, the decision tree is composed of 
certain subsets with labels, which are the same as the labels in the training data. As this is a type of supervised 
learning method, training labels are necessary. As described above, the labels obtained in the spectral clustering 
were used as the training data. The classification and regression tree (CART) algorithm41,42 was used for training.
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